A CHARACTERIZATION OF THE POWER FUNCTION DISTRIBUTION BY INDEPENDENT PROPERTY OF LOWER RECORD VALUES

EUN-HYUK LIM* AND MIN-YOUNG LEE**

ABSTRACT. We prove a characterization of the power function distribution by lower record values. We prove that $F(x) = \left(\frac{x}{a}\right)^{\alpha}$ for all $x, 0 < x < a, \alpha > 0$ and a > 0 if and only if $\frac{X_{L(n)}}{X_{L(m)}}$ and $X_{L(m)}$ are independent for $1 \le m < n$.

1. Introduction

Let $\{X_n, n \geq 1\}$ be a sequence of independent and identically distributed(i.i.d.) random variables with cumulative distribution function(cdf) F(x) and probability density function(pdf) f(x). Let $Y_n = max(min)\{X_1, X_2, \dots, X_n\}$ for $n \geq 1$. We say X_j is an upper(lower) record value of this sequence, if $Y_j > (<)Y_{j-1}$ for j > 1. We denote by $X_{U(m)}$ and $X_{L(m)}$ the *m*-th upper and lower record values, respectively. By definition, X_1 is an upper as well as a lower record value. The indices at which the upper record values occur are given by the record times $\{U(n), n \geq 1\}$, where $U(n) = min\{j \mid j > U(n-1), X_j > X_{U(n-1)}, n \geq$ $2\}$ with U(1) = 1. We assume that all upper record values $X_{U(i)}$ for $i \geq 1$ occur at a sequence $\{X_n, n \geq 1\}$ of i.i.d. random variables.

We define the power function distribution of a random variable.

A continuous random variable X is called the power function distribution with parameters a > 0, $\alpha > 0$ if its cdf is given by

Received September 24, 2012; Accepted January 11, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 62E10, 62E50.

Key words and phrases: power function distribution, independent and identically distributed, lower record values.

Correspondence should be addressed to Min-Young Lee, leemy@dankook.ac.kr.

(1.1)
$$F(x) = \begin{cases} \left(\frac{x}{a}\right)^{\alpha}, & 0 < x < a, \\ 0, & otherwise. \end{cases}$$

Absanullah(1995) prove that X has exponential distribution if and only if $X_{U(n)} - X_{U(m)}$ and $X_{U(m)}$ are independent. Also, Lee and Lim(2010) show that X has weibull distribution if and only if $\frac{X_{U(m)}}{X_{U(n)}}$ and $X_{U(n)}$ are independent.

In this paper, we obtain a characterization of the power function distribution by independent property of lower record values.

2. Main results

To prove Theorem 2.2, we need the following Lemma 2.1.

LEMMA 2.1. Let F(x) be an absolutely continuous function and F(x)> 0 for all x > 0. Suppose that $\frac{F(vw)}{F(v)} = e^{-q(v,w)}$ and $h(v,w) = \{q(v,w)\}^r$ $e^{-q(v,w)}\{-\frac{\partial}{\partial w}q(v,w)\}$ for $r \ge 0$, $h(v,w) \ne 0$, $\frac{\partial}{\partial w}q(v,w) \ne 0$ for any vand w. If h(v,w) is independent of v, then q(v,w) is a function of wonly.

Proof. Let

(2.1)
$$g(w) = h(v, w) = \{q(v, w)\}^r e^{-q(v, w)} \{-\frac{\partial}{\partial w}q(v, w)\}$$
$$= \sum_{j=0}^{\infty} \frac{(-1)^j}{j!} q(v, w)^{j+r} \{-\frac{\partial}{\partial w}q(v, w)\}.$$

Integrating (2.1) with respect to w, we obtain

(2.2)
$$\int g(w)dw + c = \sum_{j=0}^{\infty} \frac{(-1)^{j+1}}{j!} q(v,w)^{j+r+1} \frac{1}{(j+r+1)} = G_1(w).$$

Here G_1 is a function of w only and c is independent of w but may depend on v.

Now letting $w \to 1$, $q(v, w) \to 0$, we have c independently of v from (2.2). Therefore

A characterization of the power function distribution

$$0 = \frac{\partial}{\partial v} G_1(w) = \sum_{j=0}^{\infty} \frac{(-1)^j}{j!} q(v, w)^{j+r} \{-\frac{\partial}{\partial v} q(v, w)\}$$
$$= g(w) \{-\frac{\partial}{\partial w} q(v, w)\}^{-1} \{\frac{\partial}{\partial v} q(v, w)\}.$$

We know $h(v,w) \neq 0$ and $\frac{\partial}{\partial w}q(v,w) \neq 0$, so we must have

$$\frac{\partial}{\partial v}q(v,w) = 0.$$

Hence q(v, w) is a function of w only.

THEOREM 2.2. Let $\{X_n, n \ge 1\}$ be a sequence of i.i.d. random variables with cdf F(x) which is absolutely continuous with pdf f(x) and F(a) = 1 and F(x) < 1 for all x, 0 < x < a. Then $F(x) = (\frac{x}{a})^{\alpha}$ for all x, 0 < x < a and a > 0 if and only if $\frac{X_{L(n)}}{X_{L(m)}}$ and $X_{L(m)}$ are independent for $1 \le m < n$.

Proof. The joint pdf $f_{m,n}(x,y)$ of $X_{L(m)}$ and $X_{L(n)}$ is found to be

$$f_{m,n}(x,y) = \frac{\{H(x)\}^{m-1}}{(m-1)!} h(x) \frac{\{H(y) - H(x)\}^{n-m-1}}{(n-m-1)!} f(y),$$

where H(x) = -lnF(x) and $h(x) = -\frac{d}{dx}H(x)$.

Consider the functions $V = X_{L(m)}$ and $W = \frac{X_{L(n)}}{X_{L(m)}}$. It follows that $x_{L(m)} = v, x_{L(n)} = vw$ and |J| = v. Thus we can find the joint pdf $f_{V,W}(v,w)$ of V and W as

$$f_{V,W}(v,w) = \frac{\{H(v)\}^{m-1}}{(m-1)!}h(v)\frac{\{H(vw) - H(v)\}^{n-m-1}}{(n-m-1)!}f(vw)v$$

for 0 < v < a, 0 < w < 1.

If $F(x) = \left(\frac{x}{a}\right)^{\alpha}$ for all 0 < x < a and a > 0, then we get

(2.3)
$$f_{V,W}(v,w) = \frac{\alpha^2}{a(m-1)!(n-m-1)!} \times \{-\alpha \ln{(\frac{v}{a})}\}^{m-1} \{-\alpha \ln{w}\}^{n-m-1} (\frac{v}{a})^{\alpha-1} w^{\alpha-1}$$

for all v > 1, w > 1 and $\alpha > 0$.

271

The marginal pdf of W is given by

(2.4)
$$f_W(w) = \int_0^a f_{V,W}(v,w) dv = \alpha \frac{\{-\alpha \ln w\}^{n-m-1}}{(n-m-1)!} w^{\alpha-1}$$

for all 0 < w < 1, $\alpha > 0$.

Also, the pdf $f_V(v)$ is given by

(2.5)
$$f_V(v) = \frac{\{H(v)\}^{n-2}}{(n-2)!} f(v) \\ = \frac{\alpha}{a(m-1)!} \{-\alpha \ln\left(\frac{v}{a}\right)\}^{m-1} (\frac{v}{a})^{\alpha-1}.$$

From (2.3), (2.4), and (2.5), we obtain $f_{V,W}(v,w) = f_V(v)f_W(w)$. Hence V and W are independent for 1 < m < n.

Now we will prove the sufficient condition. Let us use the transformation $V = X_{L(m)}$ and $W = \frac{X_{L(n)}}{X_{L(m)}}$. The Jacobian of the transformation is |J| = v. Thus we can find the joint pdf $f_{V,W}(v, w)$ of V and W as

(2.6)
$$f_{V,W}(v,w) = \frac{\{H(v)\}^{m-1}}{(m-1)!} h(v) \frac{\{H(vw) - H(v)\}^{n-m-1}}{(n-m-1)!} f(vw) v$$

for all 0 < v < a, 0 < w < 1 and $\alpha > 0$.

The pdf $f_V(v)$ is given by

(2.7)
$$f_V(v) = \frac{\{H(v)\}^{m-1}}{(m-1)}f(v)$$

for all 0 < v < a, m > 1.

From (2.6) and (2.7), we can get the conditional pdf of $f_W(w|v)$ as $f_W(w|X_{L(m)}=v)$

$$= \frac{\{H(vw) - H(v)\}^{n-m-1}}{(n-m-1)!} \frac{f(vw)v}{F(v)}$$

= $\frac{1}{(n-m-1)!} \left(-\ln\frac{F(vw)}{F(v)} \right)^{n-m-1} \frac{f(vw)v}{F(v)}$
= $\frac{1}{(n-m-1)!} \left(-\ln\frac{F(vw)}{F(v)} \right)^{n-m-1} \left(\frac{F(vw)}{F(v)} \right) \left(-\frac{\partial}{\partial w} \left(-\ln\frac{F(vw)}{F(v)} \right) \right).$

Since V and W are independent, by using Lemma 2.1, $q(v, w) = -\ln \frac{F(vw)}{F(v)}$ is a function of w only. Thus

$$\frac{F(vw)}{F(v)} = G(w),$$

where G(w) is a function of w only. Taking $v \to a-$, we get G(w) = F(aw). Thus

(2.8)
$$F(vw) = F(v)F(aw)$$

for all 0 < v < a and 0 < w < 1.

By the theory of functional equations, the only continuous solution of (2.8) with the boundary condition F(0) = 0 is

$$F(x) = \left(\frac{x}{a}\right)^{\alpha}$$

for all 0 < x < a and $\alpha > 0$.

This completes the proof.

References

- [1] J. Aczel, *Lectures on Functional Equation and Their Applications*, Academic Press, Newyork, 1966.
- [2] M. Ahsanullah, *Record Statistics*, Nova science Publishers, Inc. NJ, USA, 1995.
- [3] M. Ahsanullah and Z. Raqab, Bounds and Characterizations of Record Statistics, Nova science Publishers, Inc, 2006.
- [4] M. Y. Lee and E. H. Lim, On Characterizations of the Weibull distribution by the independent property of record values, J. Chungcheong Math. Soc. 23 (2010), no. 2, 245-250.

*

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: ehlim@dankook.ac.kr

**

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: leemy@dankook.ac.kr 273